
A Parameterized Greedy Algorithm for Cluster

Editing

Peter E. Shaw1, Frans A. Henskens1, Michael A. Langston2, and Michael R.
Hannaford1

1 School of Electrical Engineering and Computer Science, The University of
Newcastle, Australia pshaw@cs.newcastle.edu.au

2 Department of Computer Science, Carleton University, Ottowa, Canada

Abstract. Computer technology has allowed the business and research
communities to amass huge amounts of data in electronic form. The data
per se is of little use. What owners of the data require is analysis of its
content, resulting in information that can then be used, for example, to
influence future decisions or solve problems. This paper presents a new
algorithm for automated processing of data sets to produce information
from the data, or to indicate that no such information exists. The tech-
niques are proven to be mathematically correct, and examples are used
to demonstrate application of the technique.

1 Introduction

Computer technology has allowed the business and research communities to
amass huge amounts of data in electronic form. The data per se is of little
use. What owners of the data require is analysis of its content, resulting in
information that can then be used, for example, to influence future decisions or
solve problems.

One approach to use of data for decision-making is to display the data in a form
that assists observers to identify useful trends or features (e.g. visualisation [1]).
It has been observed that display of large amounts of complex data actually
causes further confusion on the part of the observer, leading to reduced ability
to make appropriate decisions. What is preferable is that the computer performs
initial analysis of the data, providing the decision-maker with post-analysis infor-
mation of reasonable size. This approach supports, rather than hinders, decision
making [2].

In practice, automated analysis of many data sets has proven to be non trivial.
Indeed, work on such problems typically determines that they can be classified
as intractable; meaning that use of algorithms to find exact solutions cannot
be expected to yield the solutions in measurable time [3]. For example, in high
school we learned an algorithm that always found the roots (or showed there
were no Real roots) for quadratic polynomials, but there is no such generic al-
gorithm to find the roots of polynomials of degree > 4. The fact of intractability
led to a belief that it may be possible to obtain increasingly close approxima-
tions to solutions using Approximation Algorithms [4], but this was shown to

be infeasible for most of these cases [5]. This realisation created areas of pursuit
such Neural Networks [6], Heuristics [7] and Genetic Algorithms [8] which use
various motifs in an attempt to find solutions in reasonable time. The problem
with the latter techniques is that it is not possible to define an upper bound on
variance of the found solution from the optimum solution.

The data from which information is required is often very valuable, both inher-
ently and as a result of the monetary and time costs of collection. It has been
argued that it is inappropriate to be satisfied with imperfect information from
data of such high value [9]. Fixed Parameter Tractability (FPT) [10] attempts to
directly arrive at exact solution(s) by rephrasing the question in a form that can
be solved in reasonable time, producing either an optimum solution or showing
that no reasonably-sized solution (of size less than some fixed parameter) exists.
For example, a generic problem may state ”how can phone booths be most ef-
ficiently positioned in this map so that no resident has to walk more than one
block to a phone?” According to FPT, this intractable problem would be re-
worded as ”can at most 20 phones be positioned on this map so that no resident
has to walk more than one block to a phone”. The number 20 is the parameter,
and changes the generic problem into one that is bound, and for which a solu-
tion can be found, either revealing the answer or informing that the problem is
impossible to solve (i.e. because not enough phone booths have been provided -
NOT because of algorithmic intractability).

It is convenient to express many problems by using graphs, which can be ex-
pressed for computer-based analysis in terms of entities (vertices) and the re-
lationships between them (edges). These edges may be undirected or directed,
and may have weights associated with them indicating the strength of the rela-
tionship between the connected entities. Problems expressed in this form may be
simplified by considering groups of connected vertices (called clusters). Clusters
may be classified in terms of the level of connectivity of the member vertices. A
cluster for which every vertex is connected to every other vertex in the cluster
is known as a clique [11]. If a cluster has a high degree of connectivity, then
the entities in the cluster are clearly all inter-related. This may reflect, for ex-
ample, collaboration in the case of authors, or insider trading in the case of
investors. Identification of cliques, or of clusters with high level connectivity, can
be extremely useful when attempting to derive information from graphs [12].

The following section introduces and explains Cluster Editing, the analysis of the
graph to determine the effects of removal or insertion of edges on the existence
of highly connected clusters or cliques.

2 Cluster Editing

The idea behind cluster editing comes from a realisation that complex structures
(the graph) are built from components (clusters) comprising closely related sub-
components (dense sets of edges between vertices) and between which there may
be looser relationships (few edges between vertices belonging to different clus-
ters). For example, it is generally accepted that the human body is constructed
from systems such as the respiratory, muscular, skeletal, nervous, circulatory, etc.
Were the physical structure of the human body to be represented as a graph,

the components of each of these systems would be highly connected, but con-
nections would also exist between components belonging to different systems.
For example there are connections between components of the muscular and
skeletal systems, and (perhaps arguably) connections between components of
the circulatory system and all of the others.

Cluster editing is an automated process that attempts to identify:

– Non-existent edges whose creation would create cliques. The consequence of
this analysis is that the pre-insertion cluster must have been connected at a
significantly strong level.

– Edges that represent interactions between highly connected clusters, but
each of whose individual existence does not indicate strong connection. The
consequence of this analysis is that such edges represent interaction between
subsystems rather than membership of the same subsystem.

A further issue is the inevitable occurrence of errors in the data collection itself,
and in the transformation of the collected data into graphical form. Such errors
can result from diverse sources such as limitations of collection equipment, se-
lection of sampling thresholds, sampling of source data, and so on. These errors
manifest themselves as existent edges that should not be present (noise) or miss-
ing edges whose non-existence is accidental rather than truly representative of
the sample. It must be mentioned that a third class of edges is also identified by
cluster editing. These edges neither form subsystems nor represent interaction
between subsystems. Their existence is explained in the description of noise.

In practical use of cluster editing, initial analysis sometimes quickly identifies
clusters for which internal connectivity is extremely high and external connec-
tivity is almost non-existent. While not entirely discarding knowledge of such
(existing external or non-existent internal) connections, it facilitates analysis of
the remaining graph if such clusters are temporarily removed after identification
and recognition of the relationships they represent.

FPT cluster editing limits the options available during simplification of this kind.
Each change to the graph (e.g. insertion of an edge or removal of an edge) is
termed an edit, and each set of edge manipulations is called a reduction [10].
The ultimate aim is to produce disjoint cliques. A growing set of reduction rules
is being defined for use when decisions are made on possible edge edits. For
example [9] describes a rule for reducing a graph when it is bi-connected or
tri-connected. A fixed parameter (positive integer) is associated with the to-be-
solved problem, and this parameter serves as a limit on the number of edits that
are permitted in the quest for a solution. In effect, every reduction decrements
the current parameter value by the number of edits involved in the reduction. If
the current parameter value becomes zero (or negative) before a solution is found,
the technique guarantees the problem cannot be solved in the parameter-defined
number of edits. For an FPT problem the result of applying the reductions is
that the graph is reduced to a form known as the kernel. The size of the kernel
is such that it can be expressed as a function of the parameter. This means that
the time required to exhaustively search the remaining graph for solutions has
become a function of the parameter rather than a function of the initial size of
the graph [13].

Fig. 1. Crown Decomposition

The Crown Rule, originally described in [14], takes a reduction rule that had
been previously only applied to a fixed number of vertices, and generalises its
application to an arbitrary number of vertices. The cluster editing form of the
Crown Rule, described in [15] and depicted in Figure 1, is a reduction rule
that partitions a graph into three disjoint sets of vertices. The first of these
sets, known as the crown (depicted as black circles), comprises vertices that
are fully connected with each other. The second set, known as the (depicted
as grey circles), logically sits between the crown and the rest of the graph. Its
vertices are fully connected to those in the crown, but not necessarily to the
vertices in the head or the rest of the graph (depicted as open circles). Included
in the Rule is a stipulation on the relative sizes of the crown and the head
that prevents construction of an under-sized crown compared with the size of
the head. Ultimately, application of the Crown Rule identifies a set of edits
that produce a disconnected clique (the crown and the head) that can then be
removed from further consideration in the quest for a solution.

Recent hybrid techniques use FPT cluster editing in combination with other
techniques (e.g. improved approximation [16], heuristics [2], or use of improved
approximation to influence choice of reduction rules [15, 17]).

Identifying locations for potential application of reduction rules, and then choos-
ing the appropriate rule to apply, presents a challenge. This issue is further
discussed in [18, 19]. A techniques known as Greedy Localization starts by iter-
atively processing and annotating the graph (to produce a maximal packing),
after which it either identifies locations for application of reduction rules or de-
termines that the question cannot be solved for the given parameter [20, 21].
The following section describes a new algorithm that uses a hybrid technique
combining the greedy localization and the cluster editing Crown Rule to obtain
an improved kernel for the cluster editing problem.

3 Improved Kernelization

In this section we consider the situation in which we are given an undirected
graph G(V, E) where V is the set of vertices and E is the set of edges of the
graph. We are also given a non-negative integer parameter k. The question to
be answered, the k-Cluster Editing Problem, can be expressed as:

“Can we transform G by deleting and adding at most k edges into a graph that
consists of a disjoint union of cliques?”

Solving this problem is achieved by initially reducing the graph by applying
the Crown Reduction rule. This rule was first used in [15]. This will produce
a reduced form of the graph, which will then be further processed. The Crown
reduction used is unique in that it produces a smaller kernel than can be achieved
by previous techniques, and it is fast enough that its use can be interleaved with
the second phase, namely the search of the resultant reduced graph.

Definition 1. A Crown Decomposition of a graph G = (V,E) is a tripartition of
the vertices of the graph into three sets H,C and X with the following properties:

1. C is a clique

2. Every vertex of C is adjacent to every vertex of H

3. H is a cutset, in the sense that there are no edges between C and X, the rest
of the graph: the set of vertice in V \ (C ∪ H)

4. N = {for all v ∈ V − (C − H)∃u ∈ H, with corresponding uv in E}.

Reduction Rule 1 The Cluster Crown Reduction Rule: If (G,K) is an in-
stance of the Cluster Editing problem, and G admits a cluster crown decompo-
sition (C,H,N,X) where |C| ≥ |H| + |N | − 1 then replace G, k) with (G′, k′)
where G′ = G − C − H and k′ = k − e − f , where e is the number of edges that
need to be added between vertices of H in order to make the union of C and H
into a clique and f is the number of edges between H and N .

We refer the reader to [15] for the proof of this rule.

4 The proof of kernel k-Cluster Editing

The following description uses the terminology:

– P3 is a path with 3 vertices and 3 edges.

– Ci is the set of vertices in the ith clique.

– Similarly Hi, Ni and Xi are the set contain it the ith crown decomposition.

– V (P) is the set oc vertices in the packing P .

– < O > is the graph induced by the set of vertices of O.

4.1 Kernelization and Boundary Lemmas

Let ci = |Ci|, hi = |Hi| ni = |Ni| and xi = |Xi|

Before giving the preprocessing algorithm we make the following observations.

Observation 1 If their exists a maximal packing P of vertex pair disjoint P3’s
(paths of length 2) in G of size |P | > k then (G, k) is a No -instance for k-
Cluster Editing.

In Table 1 we describe a polynomial O(nE) time preprocessing algorithm which
we apply to an instance (G, k) of k-Cluster Editing.

Step 1. Generate a maximal packing of vertex pair disjoint

P3’s.

Let O = V \ V (P) (We will argue in Lemma 2 that P

implies that O is either the empty set of consists

of disjoint cliques)

Step 2. From observation 1 if |P | > k answer No and halt.

Step 3. For each of these disjoint cliques Ci in O

determine the adjacent vertices in V (P) and hence

a cut-set Hi that separates it from the rest of

the graph. To do this:

Step 3a. Choose one vertex from each of the disjoint cliques

and consider its neighbors. Those neighbor not in

V (P) are also in Ci and the others belong to Hi.

Determine the size of an alternative packing P ′

(described in detail below).

Step 4. If |P ′| > k then answer No and halt.

If |G| > 8k then by Lemma 1 then the instance (G, k)
is a No instance

Return No

Table 1. Kernel Algorithm

4.2 Kernelization and Boundary Lemmas

Lemma 1. Algorithmic Boundary Lemma If |V (G)| > 8k then the preprocessing
algorithm with either decide the instance of (G, k) or it will reduce it.

Proof by contradiction will follow.

Lemma 2. Algorithmic Boundary Lemma If G = (V,E) is a Yes-instance of
the k-Cluster Editingproblem for parameter k, a No -instance for parameter
k + 1, and G is reduced after applying the Crown Rule using the algorithm given
in Table 1 , then |V | ≤ 8k.

Proof. 2 Assume in contradiction to Lemma 2 that |V (G)| > 8k, but that the
algorithm has neither decided the instance (G, k) nor reduced it.

After the preprocessing algorithm has run, V (G) is partitioned as follows:

– V (P), the vertices in the maximal packing P of vertex pair disjoint P ′
3s in

G.
– O = V \ V (P), the vertices not present in P .

Structural Claims:

Claim 1 < O > is a union of disjoint cliques.

Claim 2 Each maximal clique in Ci in < O > induces a crown structure
(C,H,X) in G. Furthermore H ⊆ P .

Proof of Claim 2. Let Ci 0 ≤ i ≤ m be the independent cliques in < O >.
Let Hi be those vertices in V (P) adjacent to Ci. Suppose ∃ a pair of edges
(u, v) such that u ∈ Ci, v ∈ Hi and (u, v) 6∈ E But as u ∈ H,∃w adjacent
to u. Hence, exist a P3 = (u,w, v) 6∈ P which contracts the assumption
that P is maximal.

Claim 3 |V (P)| ≤ 3k.

Proof of Claim 3. For every P3 ∈ P one edge need or removed. However,
as none of these P3’s share a pair of vertices at least one edit is needed
for each. Thus |P | ≤ k. But each P3 can contribute at most 3 vertices.

Claim 4 If u, v belong to different cliques in < O >, then u, v don’t share a
common neighbor in P

Proof of Claim 4. Suppose, u, v 6∈ P thus, u, x, v cannot share common
vertex pairs with any P3 in P . However, as u, v belong to different cliques
there is no edge between them so px = (u, x, v) is also a P3. But, this
contradicts the assumption that P is maximal we can increase P3 by
adding px.

Claim 5 The heads of the crown structures are disjoint.

Proof of Claim 5. Follows directly from claim 4

In the alternative packing one verticex in each P3 are choosen from each of the
sets Ci, Hi and Ni for each crown decomposition detected in the first packing.

Claim 6 Observe that this implies that the edges in the P3’s contained in any
Crown Decomposition are disjoint. Further, the number of P3’s contain in the
crown decomposition (Ni,Hi, Ci) is at least min[|Ni|, |Ci|].

Proof. For each ni ∈ Ni choose an edge (nj , hj) (such an edge exist by def of
Ni)

As Ci ≥ Ni and Ci and Hi are completely biconnected, there must also exist
some edge (hj , cj), cj ∈ Ci such that (hj , cj) is not already in the packing. One
P3 is generated for each nj ∈ Ni.

As Ci and Hi are completely biconnected, for j = 1 . . . |Ci|, there must also
exist some edge (hj , cj), cj ∈ Ci such that (hj , cj) is not already in the packing.
Hence, at least |Ci| P3’s are created.

Claim 7 In the packing P ∗, an edge is shared by at most two P3

Proof of Claim 8. In the alternative packing, the P3 are all edge disjoint
for any individual crown decompositions used to generate it. Further-
more, in the alternative packing edges either lie between the head and
the crown vertices of a crown decomposition or between two heads. But,
as no two crowns share the same head, the edges connecting vertices in
the heads are shared by at most two P3.

A second lower bound, based on an alternative packing P ′ or P3’s, is then cal-
culated.

Claim 8 2|P ′| ≥
∑

Ci∈O min[Ci, Ni]. Hence
∑r

i=1
Ci +

∑m

r+1
Ni ≤ 2|P ′| ≤ 2k

Proof of Claim 8. This ensures that
∑

Ci∈<O>,stNi>Ci
Ci+

∑
Ci∈<O>,stCi≥Ni

Ni ≤
2|P | ≤ 2k

Although the minimum size of this packing is determined, it does not need to be
constructed and is unlikely to reveal additional crowns

∑
Ci would be smaller.

Combined with the crown rule this then gives the new kernel size.

|V | ≤ |P | + |O|

≤ |P | +
∑

Ci∈O,stCi≥Ni

Ci +
∑

Ci∈O,stCi<Ni

Ci

≤ |P | +
∑

Ci∈O,stCi>Hi+Ni−1≥Ni

Ci +
∑

Ci∈O,stHi+Ni−1>Ci≥Ni

Ci +
∑

Ci∈O,stCi<Ni

Ci

≤ |P | +
∑

Ci∈O,stCi≥Ni

(Hi + Ni − 2) +
∑

Ci∈O,stCi<Ni

Ci (By crown rule)

≤ |P | +
∑

Ci>Ni

(Hi − 2) + [
∑

Ci>Ni

Ni +
∑

Ci<Ni

Ci]

≤ |P | +
∑

Ci>Ni

(Hi − 2) + 2k (By claim 8)

≤ 3k + 3k − 2 + 2k By claim 3)

≤ 8k − 2

Proof. 1 Assume in contradiction to the stated theorem that there exists a graph
G of size |V (G)| > 8k but has no k-Cluster Editing.

Let k′ < k be the largest k′ for which G is a Yes-instance. By the Boundary
Lemma 2 we know that |V (G)| ≤ 8k′−2 < 8k−2. This contradicts the assump-
tion.

Thus the total size |V (G)| = |V (P)| + |O| ≤ 8k − 2.

5 Test Results

By way of preliminary discussion of the results, the number of vertices available
in our search for cliques is at most |V |−|V (P)|. But as k can be as large as n2/4
this may leave very little in the graph for cliques. As the compression form of
the algorithm uses a 4-approximation to choose the crown heads, the amount of
the graph remaining for crowns (cliques) is |V | − |V (A)| [23]. Theoretical V (A)
(the number of vertices in the approximation) can be 2×4k = 8k in size, which
could be even worse than using the packing. But, if the approximation found lies
on the boundary of two large cliques, this could be as small as the square root
of k. i.e. some fraction of n. As a result we might obtain much better results.

This poses the question as to which algorithm gives the best result in practice. To
help answer this question we have tested the performance of these algorithms on a
variety of graphs. It was our initial intention to apply both algorithms to a range
of real and random data. Current limitations on obtaining approximations below
make using the 4–approximation was not possible for the microarray datasets
being used. However, we also processed these datasets using a heuristic algorithm
in order to measure what results could be obtained in this way.

6 Data

Two sets of data were processed. The first was pseud-random data previously
evaluated in [9]. Real data representing micro-array (SH2-3) and protein-protein
(globin) networks was also processed. This real data was converted from a
weighted complete graph derived using a number of thresholds. The use of mul-
tiple thresholds resulted in graphs of a variety of densities.

7 Implementation decisions and justifications

The performance of these algorithms was evaluated using a 4 Xeon 3.4 GHz
system with 12GB main memory. One processor was left idle to support other
tasks un-associated with the experiments. All kernelization programs were writ-
ten in C++ and compiled using GNU C++ compiler gcc 3.4.6 under a 64bit
environment. The LEDA v 5.1 graph library was used to implement the graph
structures. It is recognised that this uses adjacency lists, but due to the simple
nature of the algorithms used, no extra O(n) was incurred as a result.

When evaluating the performance of the compression kernelization algorithm
[15] an approximation was needed. This was obtained using the lp-solve linear
programming library. Slightly better performance may be observed if a different
libray such as CPLEX was used. However, as the algorithm used equates to an
O(n8) complexity [22] this speedup was not sufficient to allow it to be used on
datasets large then a 100 nodes. Note that an O(n5) variation of this algorithm
also exists, but no implementation of this was available to us. Tests were per-
formed using a heuristic algorithm of complexity approx O(n5) so that larger
datasets could be included.

8 Results

The Table 2 shows results obtained from the compression algorithm using a
greedy approximation on protein-protein globin graph for various thresholds.
This shows that greedy localization is effective when the number of edges is
relatively small (low density graph), evidenced by the large reduction achieved.
As the density of the graph increased, the technique became effective. Table 3
shows a comparison of processing the same data using greedy localization and
compression algorithm [15] respectively. Two densities of original graph were
used. An optimal solution is obtainable for both of these simple graphs. The
best reduction in graph size is obtained on 50v10c18ed, when a the compres-
sion algorithm was used with a greedy approximation in addition to packing
based algorithm. However, for this problem using the 4-approximation in the
compression algorithm also produced the same result.

No reduction is observed in the more dense graph (50v225edges5c). However,
the improved lower bound obtained from the greedy localization indicates that
the approximation required by the compression algorithm was, in fact, optimal.
Thus neither the approximation nor greedy techniques reduced the graph.

Set Name Number Vertices Number Edges Kernel Size Removed Edges, δk

Globin3 972 3898 770 647 92
Globin4 972 9160 916 64 20
Globin5 972 18986 965 7 4
Globin6 972 27671 967 4 3
Globin7 972 38557 969 4 3
Globin8 972 47797 969 4 3
Globin9 972 62525 969 4 3
Globin10 972 75386 971 1 1
Globin11 972 91317 972 0 0

Table 2. Effect of crown rule for varying graph density

In [9] unexpected results where obtained on the execution times for solving clus-
ter editing. It was found that the processing cost of solving the FPT problem
when k increased significantly as k increased above optimal. Thus, any refinement
in the valid range of optimal solution time could significantly decrease the pro-
cessing time in finding an optimal solution. While the optimal result obtained in
the graph 50v225edge5c is the result of the approximation being optimum, with-
out the lower bound obtained from the packing this would not be known. Table

Data Vertices Kernel Original Reduced Lower δk Approx Method

name size Edges Edges Bound k Size Used

50v10c18ed 50 10 100 19 3 10 n/a Greedy
50v10c18ed 50 0 100 0 1 18 34 Compression

50v225edges5c 50 50 225 225 44 0 139 Greedy
50v225edges5c 50 50 225 225 44 0 44 Compression

Table 3. Optimal solutions found by combining both algorithms

4 shows the processing of globin graphs using heuristic approximation combined
with Crown rule reduction. The table shows calculation of an integrity factor,
expressed as Integrity = Approximation Size / Lower Bound. It is not possible
to calculate this integrity factor when using many heuristic techniques, and the
data set is too large to be processed in reasonable time by the best-known ap-
proximation techniques [23]. However, the integrity figures obtained by the new
greedy technique exceed those reported in [23].

Set Name Num Kernel Num Reduced Lower δk Approx Integrity

Set Name Vertices Size Edges Edges Bound k Size

sh2-3 839 767 5860 5820 2894 40 5133 1.77367

sh2-3-2*** 839 767 5860 5820 2894 0 5159 1.77367

sh2-4 839 827 13799 13797 6885 2 11321 1.644299

sh2-5 839 832 26612 26612 13294 0 20409 1.535204

globin10 972 971 75386 75385 37273 1 56821 1.524455

Table 4. Lower bound gives integrity for heuristic approximation

9 Conclusions and Further Research

This paper presented a new kernelization algorithm, combining greedy localiza-
tion and the Crown rule, that produces an improved 8k kernel towards solution
of the cluster editing problem. The techniques are proven to be mathematically
correct, and examples show that application of the technique:

– produces results for dense graphs when the best approximation techniques
cannot produce a result in reasonable time,

– produces results with better bounds than is otherwise achievable using heuris-
tic or approximation algorithms, and

– Is O(nE), (where E is the number of edges) meaning that its time-complexity
is linear with respect to the density of the graph. This means that the new
reduction technique is fast enough for interleaving with the search algorithm.

Work is in progress on production of an interleaved implementation of the tech-
nique. In previous work investigating the use of interleaving with linear kernel-
ization (on easier problems), the manageable size for data sets was found to
increase from about 200 vertices to about 50,000. It is expected that this in-
crease will be exceeded through the application of greedy localization and the
Crown reduction rule. The outcome of experiments using the new interleaved
implementation will be reported in a future publication.

References

1. Eades, P., Feng, Q.W.: Multilevel visualization of clustered graphs. Lecture Notes
in Computer Science (1996) 101–112

2. Michalewicz, A., e.a.: Case study: An intelligent decision-support system. IEEE
Intelligent Systems 20 (2005) 43–49

3. Garey, M., Johnson, D.: Computers and Intractiblity. A Guide to the Theory of
NP-Completeness. New Yourk: W. H. Freeman (1979)

4. Vazirani, V.: Approximation Algorithms. Springer-Verlag (2001)
5. Khanna, S.: On syntactic versus computational views of approximability. Sian

Journal of Computing 28 (1999) 164–191
6. Anderson, J.: An introduction to neural networks. Cambridge, Mass.: MIT Press

(1995)
7. Michalewicz: Heuristic methods for evolutionary computation techniques. Journal

of Heuristics (1995)
8. Mitchell, M.: An Introduction to Genetic Algorithms. Cambridge, MA: MIT Press

(1996)
9. Dehne, F., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster

editing problem: Implementations and experiments. In: Proc. Int. Workshop on
Parameterized and Exact Computation (IWPEC), Springer LNCS (2006)

10. Downey, R., Fellows, M.: Parameterized complexity. Springer Verlag. New York:
Springer (1999)

11. Harary, F.: Graph Theory. Reading, MA: Addison-Wesley (1994)
12. Shamir, R., Sharan, R., D., T.: Cluster graph modification problems. Discrete and

Applied Mathematics 144 (2004) 173–182 preliminary version in: 28th WG 2002,
LNCS 2573 (2002), 379-390.

13. L. Cai, J. Chen, R.D., Fellows, M.R.: On the parameterized complexity of short
computation and factorization. Arch. for Math. Logic 36 (1997)

14. Chor, B., Fellows, M., Juedes, D.: Linear kernels in linear tme or how to save k

colors in o(n2) steps. In: Proceedings WG 2004-30th Workshop on Graph Theoretic
Concepts in Computer Science,. Lecture Notes in Competer Science, Springer-
Verlag (2004)

15. Fellows, M., Langston, M., Rosamond, F., Shaw, P.: Efficient preprocess algorithm
for cluster editing. In: LNCS, Springer Virlag (2007) incomplete fix.

16. Prieto-Rodriguez, E.: Systematic Kernelization in FPT Algorithm Design. Ph. D.
Thesis. PhD thesis, School of EE&CS, University of Newcastle, Australia (2005)

17. Guo J., e.a.: Improved fixed-parameter algorithms for two feedback set problems.
In: WADS. (2005)

18. Estivill-Castro, V.e.a. In: FPT is P-Time extremal structure 1. King’s College
Publications (2005) 1–41

19. Fellows, M.: Blow-ups, win/wins and crown rules: Some new directions in fpt. In:
Lecture Notes in Computer Science, Springer-Verlag (2003) 1–12

20. Dehne, F., Fellows, M., Rosamond, F., Shaw., P.: Greedy localization, iterative
compression and modeled crown reductions: new fpt techniques, an improved algo-
rithm for set splitting and a novel 2k kernelization for vertex cover. In: Proceedings
of the First International Workshop on Parameterized and Exact Computation.
Lecture Notes in Computer Science, Springer-Verlag (2004) 271–280

21. Fellows, M., E., P., Sloper, C.: Looking at the stars. In: IWPEC04, Springer Verlag
(2004)

22. Wirth, A.: Approximation Algorithms for Clustering. PhD thesis, Princeton Uni-
versity (2005)

23. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information.
Journal of Computer and System Sciences 71 (2005) 360–383

